Publications
MedGS: Gaussian Splatting for Multi-Modal 3D Medical Imaging
Authors: Kacper Marzol, Ignacy Kolton, Weronika Smolak-Dyżewska, Joanna Kaleta, Marcin Mazur, Przemysław Spurek
arXiv preprint arXiv:2509.16806 • September 2025
Multi-modal three-dimensional (3D) medical imaging data, derived from ultrasound, magnetic resonance imaging (MRI), and potentially computed tomography (CT), provide a widely adopted approach for non-invasive anatomical visualization. Accurate modeling, registration, and visualization in this setting depend on surface reconstruction and frame-to-frame interpolation. Traditional methods often face limitations due to image noise and incomplete information between frames. To address these challenges, we present MedGS, a semi-supervised neural implicit surface reconstruction framework that employs a Gaussian Splatting (GS)-based interpolation mechanism. In this framework, medical imaging data are represented as consecutive two-dimensional (2D) frames embedded in 3D space and modeled using Gaussian-based distributions. This representation enables robust frame interpolation and high-fidelity surface reconstruction across imaging modalities.